NONSTATIONARY HEAT TRANSFER ASSOCIATED WITH BOREHOLE WASHING
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A solution is obtained to the nonstationary axisymmetric problem of the temperature changes in a liquid
which is injected into the borehole through a central (drill or delivery) pipe lowered to the bottom of the
bore and expelled to the surface through the annular clearance about the pipe [1,2].

The borehole, of constant depth L, is drilled in a soil with a natural steady temperature distribution and,
prior to injection, is filled with a liquid whose temperature varies in proportion to the geothermal
gradient. The liquid is pumped into the central tube at a constant rate Q at a known time-variable
temperature. Two example cases are examined. In the first, the liquid enters the pipe at a constant
temperature. In the second case, the temperature of the liquid injected through the central pipe is
variable and equal to that of the liquid expelled through the annular clearance (closed-cycle

cireulation).

Both problems are of interest in drilling technology and inthe evaluation of thermal effects on the oil bed.

1. We direct the Oz-axis of a cylindrical coordinate system with origin at ground level along the axis of the
central pipe.

The heat flux equation of the liquid moving in the central pipe and in the annular clearance about it has the form

for t>0,0<:< L0 r< Ry
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for ¢>0,0<s<L, By <r<R
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Here T; and T, are the core temperatures of the fluid flowing in the central and annular pipes, respectively (it is
assumed that the temperature in the cross section of each tube varies insignificantly with respect to these quantities
and that the latter define the temperature of the liquid over the entire cross section); w; and w, are the mean flow
rates of the liquid in the central and annular pipes, respectively (their values are equal to the flow rate divided by the
corresponding area); d, is the heat flow to the inner surface of the borehole; R; and R are the radii of the central pipe
and the borehole, respectively; p and ¢ are the density and heat capacity of the fluid; and k is the coefficient of heat
transfer between the liquid in the central pipe and the liquid in the annular clearance.
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The heat transfer coefficient depends on the flow rate, the thermophysical properties of the liquid, and
geometry of the flow area, and is calculated from the known formula in heat transfer theory.
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It can readily be seen that Eq. (1.1) does not contain terms which account for changes in the heat flow owing to
the heat conduction along the axis and to the heat released in the fluid due to viscous friction. These terms are
negligible in the first approximation as compared to the other terms in the equation.

Furthermore, it is assumed that the heat flows to the outer and inner surfaces of the central pipe are
proportional to the temperature difference of the flow cores in the central and annular pipes.
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The last equation of system (1.1) contains the value of the heat flow from the liquid to the inner surface of the
heat flow from the liquid to the inner surface of the borehole. This value can be calculated by neglecting the heat
transfer in the material of the borehole and by equating the heat flows and temperatures of the liquid and the soil at
its surface, '

ar A
g, = 2Rx), <T>FE>T=R o Te=(Td—p, h=7p. (1.2)

Here A is the ratio of the thermal conductivities of the soil and liquid; T, is the temperature of the soil, and v is
the thermal diffusivity of the liquid.
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For practically important time intervals the soil is heated along the radius over a length that is much smaller
than that of the borehole, the temperature gradients along the radius and along the length of the borehcle being
roughly equal. Because of this, the term 8*T/9z% in the heat flux equation may be neglected in comparison with the
other terms [2]. The heat flux equation for soil has the following form:

C ATy 1 9 2Ty
T:Ms?%;‘(r Gr) (>0, 02 L, R<r < o0),
Ty=T3(t 2, 7), ’ (1.3)

where »y is the thermal diffusivity of the soil.

For the case in which the liquid enters the central pipe at a known variable temperature, the initial and
boundary conditions may be written in the form

Iy=Ty=Ts=T,+Tz  (¢=00<s<L,0<r <o),
Ty=Te(® (>0, 2=0), (1.4)
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Ti=1T, (t>0, z=L),
T T, +Tz (20,7 ooy

where T, is the temperature of the neutral layer; T is the geothermal gradient; and T,(t) is the temperature of the
injected liquid.
We introduce the dimensionless variables

7T, : , -
o= T**’ g:—L—, T]:'F, T:TLLt (1‘5)

With these variables, Eqs. (1.1) and (1.3) and the limiting conditions (1.4) have the form

for t>0,0<E<1, 0<n< R/ R
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We introduce the new function

6 = o — yE. (1.8)

For this function, Egs. (1.6) and conditions (1.7) have the form
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2. We apply the one-dimensional Laplace-Karlson transformation with respect to the variable 7 to Eqs. (1.9) and
conditions (1.10). The transform of the function 9, which results from transformation with respect to the variable 7,
we term O, i.e.,

(s & W=>r\ PO, & n)dr. (2.1)
[}

As a result of the transformation, we obtain

d8
61 +d_il +r=a(B8;—8y), 6:=86:1(pE), 8;=6:(p, £},

48 98 1,
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8,=92 (E=0,  8=6 (=1 (2.3)

80 (M-oo), O=(8),_, (O<EY,

where @ is the transform of function wy(7).

The solution of the last equation in (2.2), which satisfies the condition at infinity, has the form
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8= O (p, 7K, (V[ an), (2.4

where ®(p, £) is an unknown function of p and { determined from the condition for n = 1. It can be readily seen that the
following chain of equalities is valid:

28, _ -
( s)nzl =—0(p, 8) Vp/ak: (Vo) =

o
=— Vp/at (p, 2) (83),_, =— Vr/af(p, @) 6,
XI(V})/_G:) ,
o) = T (2.5)
T =g Vara

where Ky(x) and K, (x) are MacDonald functions with the subsecripts zero and unity.

We substitute the last link of the chain into the second equation of system (2.2). As a result, we obtain a system
of equations for determining the temperature of the liquid in the central and annular pipes:

de ‘
POt T=a—6) O=6:(pD ©=0( 0, {2.6)
d8, —
updy — - — 1= (01— 0) —2b Vpjaf (p, @) 6,
0, =Q (E =0), 6, = 8, (E =1). (2.7)

In addition, from equalities (2.4) and (2.5), we obtain the following formula for determining the transform of the
temperature in the soil

Ko (V p/an)

=8 S
&= e VT

(2.8

It is not difficult to obtain a solution of system (2.6), and then to determine the transform of the temperature in
the soil @ from formula (2.8). This solution has the following form:
8 = Bie™® & Bt 4 4,
By = a7t (Ay + p) + 1] Bue™® - [0 (A + p) + 1] Bae™* + A1+ p/a) 47/ a, (2.9)
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If the liquid is injected into the central pipe at a known variable temperature, the constants of integration B, and
B,, determined from the boundary conditions, have the form

AP+ 7 — Qo+ 4) (Mg p) e’
By=— .  By=—B;—Qy— 4.
! M (Ar+ p) — e (Ay + p) ? o4

In the case of closed-cycle circulation, when the temperature of the liquid flowing out of the annular clearance is
equal to that of the injected liquid, the constants B; and B, have the form

o pd)Eh—1) By LLEPA N —1)
(Bt p) (M1 — eh) At p et —e™)

Inversion of the solutions obtained was performed by the numerical method of [3}, by which inverse transform is
sought as a series in Legendre polynomials:

[er3

8= 0,Py, (X), X =e. {2.10)

n=0
In order to determine the series coefficients, one must know the values of the transform ® at the equidistant
points p = (2n + 1)o.

Here ¢ is a positive number, and n =0, 1, 2,.... The selection of the value for ¢ depends on the time interval
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within which the value of the inverse transform of 6 must be computed.
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The coefficients c, are determined from a system of algebraic equations given in [3]. Making use of this method
and of the transforms ®;, ®,, and ®; obtained, we calculated the temperature of the liquid at several points of the
borehole and soil for various times, both for constant temperature of the injected liquid and for closed-circuit
circulation.

The calculations were performed for the following values of the quantities which define the heat transfer
conditions:

¢ =1keal/kg-°C p = 10° kg/m® A, = 0.53 kcal/m-°C-hr,
a5 =2 .40~ m® hr A, =1 Kcal/m-°C~hr ¢ = 30 liter/sec,
L=1500m, R, =25", R=4".
The coefficient k of heat transfer between the liquid moving in the central pipe and that in the annular clearance
was assumed to be constant and equal to 103 keal/m?- ° C-hr. Inthe first case under consideration, we assumed that

Ty =9 C, T =0.032° C/m, and Ty = 25° C, and in the second case that I' = 0.041° C/m and Ty = 11.5° C. The value of ¢
was set as 0.02.

The selection of the values in (2.11) was not arbitrary, but corresponded to the conditions of an experiment
aimed at determining the cooling of the bottom of the borehole. In this experiment, the temperature of the liquid was
measured at the inlet and at the bottom of the borehole into which a liquid with a temperature T, = 9° C was injected
through the central pipe.
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For the injection of a liquid of constant temperature Ty, the results of numerical inversion with subsequent
transition to dimensional values were used as a basis to plot the temperature of the liquid (T" C) against the time
(t, in hr) at various points of the central pipe (Fig. 1) and the annular clearance (Fig. 2). The distance of a point
from the borehole inlet (in m) is indicated at each curve.
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Figure 3 shows a plot of the soil temperature against time (T, = coust), from which it may be seen that heating
of the soil is very slow (over a thickness of roughly four radii in the course of 20 hr).

For the case of closed-circuit circulation, the time-variation of the liquid at the bottom 1 and the inlet 2 of the
borehole is shown in Fig. 4. The curves reveal the rapid temperature compensation in the circulating ligquid.

In Fig. 5, the temperature of the liquid at the bottom and inlet of the borehole is plotted against time for various
values of the heat transfer coefficient k. The curves numbered 1, 2, 3, and 4 correspond to the following values of k:
10%, 2-10%, 3-10%, and 4-10° keal/m®- °C - hr.

The plots obtained indicate that the heat transfer coefficient has a greater effect on the temperature of the liquid
at the bottom than at the inlet of the borehole (the temperature curves at the inlet almost overlap). In addition, Fig. 5
shows (dashed line) the temperature variation curve of the liquid at the bottom of the borehole, plotted from the
formulas proposed in [2] for a heat transfer coefficient k = 2- 103 keal/m? - ° C-hr. The circles in Fig. 5 refer to the
temperatures of the liquid at the inlet and the bottom of the borehole that were measured in the experiment mentioned
above. The experimental and theoretical results for k = 2- 103 keal/m*- ° C- hr are in good agreement.

The results of the analysis show that, owing to the substantial variations of the liquid temperature over large
time intervals, one may not use the assumption of a stationary nature of the heat transfer [1] in the solution of the
problem under consideration.

The experimental and theoretical results are in satisfactory agreement even for a constant value of the heat
transfer coefficient.

The curves indicate that the formulas in [2], obtained by the method of successive steady-state shifts are well
suited for calculating the temperature of the liquid. For the value of ¢ selected, the number of terms retained in the
series (2.10) to ensure the accuracy desired varied from four to six, depending on the value of £.

Calculation of the series coefficients from the formulas proposed in [3] does not involve any major difficulties,
and can be performed on a Rheinmetall computer.
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